drgania tłumione
fizykman14: Rysunek przedstawia początkowe położenie jednorodnego pręta o masie 0,20 kg.
Drgania pręta są tłumione na skutek tarcia w punkcie podwieszenia, a siła oporów jest
proporcjonalna do dθ/dt.
Po 8 s od momentu swobodnego puszczenia amplituda zmalało do wartości 5,5o.
Jeżeli Θ(t) = A exp(−βt)cos(ω't), gdzie ω' = √ω02 − β2 ,
to jaka jest wartość parametru β? Jaki jest okres drgań?
13 maj 18:20
fizykman14: Za szybko wysłałem pytanie, chciałem tylko zobaczyć podgląd czy widać wzór.
Tutaj obrazek o którym mowa
https://imgur.com/a/Buhfr
Dziękuję za pomoc
13 maj 18:23
'Leszek: okres wahań swobodnych , bez tłumienia
To = 2π*√J/mgd , oraz J = md2/3 moment bezwładności na podstawie tw.Steinera
ωo = 2π/To = 5,94 1/s
Φo = 15o , Φ = 5,5o
Φ = Φo*exp(−βt)⇒β = (1/t)*ln(Φo/Φ) = 0,125 1/s
ω' = √ωo2 − β2
14 maj 13:38
fizykman14: Dziękuję Panu za pomoc, już prawie rozumiem to zadanie ale mam jeszcze dwa pytania
1) Okres drgań o który pytają w zadaniu to nie jest T
0 wyliczone z równania wahadła
| 2π | |
fizycznego, tylko okres wyliczony z równania T = |
| do którego należy podstawić ω' |
| ω | |
wyliczone na końcu zadania, tak?
2) Oczywiście wszystkie obliczenia przerobię po swojej stronie dlatego nie sprawdzałem samych
wartości, ale czy ostatnie równanie jest na pewno dobrze wyprowadzone?
Φ = Φ
0*exp(−βt)⇒β = (1/t)*ln(Φ
0/Φ).
| Φ | |
Mamy Φ = Φ0*exp(−βt), dzielę przez Φ0 i mamy exp(−βt) = |
| . |
| Φ0 | |
| Φ | |
Z zależności ex = y <==> ln(y) = x, wychodzi −βt = ln |
| , |
| Φ0 | |
dzielę przez t i mnożę przez −1
| | |
i wychodzi β = − |
| = − 0,125 |
| t | |
Czy równanie wyprowadzone przez Pana jest dobre i to ja się gdzieś pomyliłem?
Dziękuję za pomoc
14 maj 15:36
fizykman14:
14 maj 15:37
test:
14 maj 15:44
'Leszek: Kolego czytaj uwaznie to co napisalem , obliczylem najpierw ωo aby nastepnie po obliczeniu β
z podanego wzoru nalezy obliczyc ω ' ( myslalem ze to Ty obliczysz , przeciez to Ty studiujesz
)
Wspolczynnik β ja obliczylem prawidlowo ,popatrz uwaznie na obliczanie ln ( )
przeciez tam jest :
Φ = Φo*e−βt ⇒ Φ/Φo = e−βt ⇒ ln( Φ/Φo ) = −βt ⇔ ln (Φo/Φ ) = βt
( zastonow sie co stalo sie ze znakiem " − " ) matematyka ze szkoly sredniej !
β = 0,125 1/s , wartosc dodatnia !
ωo = 5,94 1/s
β= 0,125 1/s
podstaw do wzoru ω ' = √ ωo2 − β2 i oblicz samodzielnie ! ! !
14 maj 16:18
fizykman14:
Z tym minusem to rzeczywiście głupi błąd z mojej strony, za szybko napisałem zamiast rozpisać
to sobie po raz drugi na kartce i znaleźć błąd.
Przepraszam za kłopot.
T
0, ω
0, i ω ' oczywiście już sobie obliczyłem.
Nie chciałem pisać wyników żeby niepotrzebnie nie przedłużać pytania, skoro te wartości nie
były istotne do tego o co pytałem.
Może źle sformułowałem moje pierwsze pytanie, w żadnym wypadku nie chodziło mi o podanie
gotowego wyniku.
Jeżeli mówimy tu o drganiach tłumionych, to częstość tych drgań jest mniejsza niż drgań
swobodnych (tak na logikę, chociaż na pewno da się tutaj znaleźć mądre wykresy które to
przedstawiają)
W związku z tym okres tych drgań o który pytają w zadaniu również będzie inny. Wyliczamy go ze
| 2π | |
wzoru T = |
| , do którego podstawiamy |
| ω | |
ω ' wyliczone z podanego tu wzoru ω ' =
√ω02 − β2
Moim pytaniem chciałem się tylko upewnić, że jest to dobry sposób myślenia. Przepraszam za
wprowadzenie w błąd.
14 maj 17:49
'Leszek: OK ! teraz jest wszystko poprawnie , popatrz do podrecznika tam sa podane wykresy
dokladne amplitudy drgan tlumionych .
I tak jak wczesniej napisalem rozwiazuj duzo zadan , to najlepsza metoda aby dobrze
nauczyc sie fizyki , powodzenia ! Korzystaj rowniez z tego forum , nie tylko ja
zamieszczam tu rozwiazania .
14 maj 17:56
fizykman14: Na pewno jeszcze nie raz zajrzę na to forum, dziękuję za cierpliwość i zrozumiałe
wytłumaczenie.
14 maj 18:16