| Jε | ||
mg = ma + | ||
| r |
| ωr | 2h | Mr2 | ||||
ale a=εr= | = | ,J= | ,ω=2πnf,(f=1s−1),[g=9,81ms−2] | |||
| t | t2 | 2 |
| (πnfr)2)[2m+M] | ||
h= | ||
| mg |
?
| v2 | Jε | |||
mgh = m | +∫ | dr | ||
| 2 | r |
| Jε | M | Jε | Jω2 | Jε | ||||||
∫ | dr= | ∫rdr= | = | [!?],[nigdy ∫ | dr=Jεlnr ] | |||||
| r | 2 | 2 | 2 | r |
| mv2 | Jε | |||
Czyli:mgh + | + | ∧ εr=a ∧ ar=v2 ∧ ωr=v | ||
| 2 | 2 |
| v2 | ||
Czy warunek mgh−m | > 0 nakłada ograniczenia na liczbowe dane zadania ? | |
| 2 |